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An Analysis of the Scalar Helmholtz Equation Using

the Integral Equation Method
Masanori Tsuchimoto, Atsuhiko Yoneta, Toshihisa Honma, and Kenzo Miya

Abstract–The scalar Helmholtz equations are investigated by
using the integral equation method (I EM), In the IE,M analysis,
the fundamental solution of the Laplace equation is used as a
weighting function. Two IEM formulations are obtained; one
is a standard formulation and the ather is obtained from an
elimination of the unknown boundar:y value. The accuracy and

computational time of the IEM are compared with those of the
finite element method in two dimensional scalar Helmholtz

problems. The analysis of a resonant cavity is reduced to a sim-

ple eigenvalue problem. Resonant frequencies of the IEM agree

well with those of the finite difference method. Usefulness of

the IEM is confirmed through the analyses of the sicalar Helm-

holtz equations.

I. INTRODUCTION

T HE GOVERNING equations for analysis of wave

guides and resonant cavities are the Helmholtz wave

equations. They were studied by many authors with the

finite difference method (FDM) and the finite element

method (FEM) [1] –[4]. When the boundary element

method (BEM) is applied to the analysis, a determinant

search method should be used tc~ obtain resonant wave

numbers [5]. In the determinant search methc~d, a large

number of recalculations of matrix elements are necessary

for different wave numbers, since the fundamental solu-

tion of the Helmholtz equation includes the wave number.

The integral equation method (IEM) makes up for this

weak point of the BEM, and its usefulness is reported in

analyses of eigenvalue problems [5]–[9]. Numerical for-

mulation of the IEM is based on the BEM and the Helm-

holtz-wave equation is treated as the Laplace equation

with an inhomogeneous term. The determinant search

method is not needed in the IEM., since the fundamental

solution of the Laplace equation is used as a weighting

function.

In the present paper, two IEM formulations are ob-

tained for the scalar Helmholtz eqpation. One is a stand-

ard formulation [5] and the other is obtained from an

elimination of the unknown bounclary value [81, [9]. The

IEM solutions are in good agreement with exact solutions

in two dimensional scalar Helmholtz problems [10], [11].
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Though the IEM requires considerable computational time

compared with the FEM, the first derivative is obtained

directly with high accuracy. The analysis of an axisym-

metric resonant cavity is reduced to a simple eigenvalue

problem. Resonant frequencies agree well with the FDM

solutions [1]. It is shown that the IEM is useful in solving

the scalar Helmholtz equation.

II. THE IEM FORMULATION

Through a formulation of the following scalar equa-

tion, the IEM is explained:

Vzc++af$+g=o, (1)

where a is a constant and g is an arbitrary function with-

out including @. A weighted residual procedure with a

weighting function w is applied to (1). After integrating

by parts twice, the following equation is obtained:

[
wV4dF –

!
q5vw dr

r r

+
~

q5(v2 + a)wdfl +
i

gw dfl = O. (2)
0 0

where r is a boundary of a domain Q. In the IEM analy-

sis, (1) is treated as the Laplace equation with inhomo-

geneous terms and the following fundamental solution O*

of the Laplace equation is chosen as the weighting func-

tion w:

V24* + ~ = (), (3)

where 6 is the Dirac delta function. Then the integral

equation with domain integrations is obtained for a field

point i:

~ !~LV#X$*dfl +
!

~ g4* do, (4)

where \ denotes the Cauchy principal value integration.

When the bounds-iy r is sufficiently smooth, the coeffi-

cient Ci at the field point is evaluated as follows:

[

o . . . i~r+m

C’i= l/2” ””ier, (5)

1 . . . iefl.
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The boundary and the domain are divided into N and M

elements, respectively. When the Dirichlet bounda~ con-

dition & = & and the Neumann bounda~ condition

(&j /dn)r = ~r are applied to (4), the following matrix

equations are obtained for both boundary points and in-

ternal points, respectively:

= [D~]{@~}+ {d.}, (6)

= [D,]{f#Q) + {d,}, (7)

where I is an unit matrix. In the BEM analysis, (6) is

solved to obtain unknown boundary value {@r} and {qr },

and the internal value {~, } is calculated from (7). On the

other hand, since {do } in (6) is also unknown value in

the IEM analysis, positions and numbers of {Oi } in the

domain O are coincided with those of {@n}. Then (6) is

combined with (7) to make the following simultaneous

equation:

[

Or
C,rl + Hr –Gr –Dr

Ho – GO Z–DQ 1[)
-[Gr
—

GQ
::z-Hr]fzj![:). (8,

This is the first IEM formulation [5], The matrix of the

left hand side (LHS) is an (N + M) x (N + M) matrix.

The first derivative in O is calculated directly as a deriv-

ative of (4):

Furthermore, unknown bounda~ value {$;} is elimi-

nated from (8) [8], [9]. For a simple explanation, (6) and

(7) are arranged as follows:

[~1 {er} = [Q] {~r} + [S1 {4n} + {s}, (lo)

{4i} = [~1 {er} + [~1 {~r} + [T] {4.} + {t}

(11)

where {er] is the unknown boundary value {$:} and {Zr}

is the boundary condition {f}. Since the matrix [P] in

(10) is a square matrix, there is an inverse matrix

{e,} = [P]-l([Q] {~r} + [S] {4~} + {s}). (12)

Substitution of (12) to (11) yields

{4i} ~ [E] [~]-’([Q] {Z.} + [S1 {4Q} + {s})

+ [F] {E.} + [T] {4~) + {t} . (13)

When {+i} is coincided with {4n}, (13) is expressed as

([z] - [E] [P]-l[S] - [T]) {4~)

= ([E] [Z’] -’[Q] + [F]) {i2r}

+ [E] [P]-l {s} + {t} . (14)

This is the second IEM formulation, where the matrix

of the LHS is an M x h’ matrix.

III. NUMERICAL RESULTS AND DISCUSSION

A. Analysis of Two Dimensional Scalar Helmholtz

Equation

Recently, stabilities of vector FEM solutions are dis-

cussed in eddy current analyses [10], [11]. The problem

and its boundary condition are defined as follows in two

dimensional Cartesian coordinates (x, y) [10]:

VXVx B+ AB=fin Q, nxB=Oon F,

f= {2 +A(y - y2)}i+ {2 +A(x-x’)}j, (15)

where B, n are the magnetic field and a normal unit vector

on I’, and i, j indicate an unit vector for x, y directions.

The coefficient h is a time constant in the eddy current

analyses [10], [11]. In this section, (15) is transformed to

scalar Helmholtz equations and the IEM is applied to

analyses of the scalar equations. The exact solution of (15)

is obtained for a square numerical model in Fig. 1 [10]:

B= (y– y2)i+ (x–x2)j, (16)

Fig. 2 shows distributions of the exact solutions. From

the boundary condition in (15), the magnetic field is per-

pendicular to the boundary of the model. Equation (15) is

transformed as follows under a condition of V “ B = O:

V2B – AB = –f. (17)

For the numerical model in Fig. 1, (17) is separated into

x, y components and reduced to the following scalar equa-

tions:

V2BX – ~, = –2 – h(y ‘yz),

V2BV – )@Y = –2 – A(X ‘X2), (18)

Furthermore, an equivalent scalar Helmholtz equation to

(15) and its boundary condition are obtained from B = V

xA, A = (0,0, AZ) [11]:

V 2A, - XAZ = –g, in 0, i3A,/&z = O on 17,

g =2(y –x) + x[; (y2 –X2)

- :(Y3 - ~’)). (19)
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Fig. 1. Division of the numerical model for the two dimensional scalar

Helmholtz equal ion.

Equations (18) and (19) are solved by the IEM and t$e
FEM. The same evaluation of the integrals is applied in

order to compare results of the both methods. The model

in Fig. 1 is divided to 8 x 8 domain elements and the

integrals are evaluated by using the Gaussian integration

with linear interpolation functions. Fig. 3 shows relative

errors of the magnetic field BX of (18) on the line AC in

Fig. 1. The coefficient X is set tcl 10- 6 which is a typical

parameter for spurious solutions in the vector FEM anal-

yses [10], [1 1]. Since (18) is a scalar equation, there is

no spurious solution in the analysis [10], [1 1], Both IEM

and FEM solutions agree well with exact solutions. In the

analysis of (19), the magnetic field BX is obtained as the

derivative of AZ, i;e., BX = (&4Z /~y). Relative errors are

shown in Fig. 4. In the standard FEM analyses, the first

derivative is calculated as a difference of internal values.

A rough division of the model often becomes a source of

error. In the IEM, the first derivative is obtained directly

from (9) with high accuracy. On the other hand, compu-

tational time of the IEM is about twice as long as that of
the FEM, since integrals are complicated in the IEM corn

pared with those in the FEM.

B. Analysis of an Axisymmetric Resonant Cavity

In this section, an axisymmetric resonant cavity is stud-

ied with the second IEM formulation. Maxwell’s equa-

Co 1 ● FEM
8
kl.o o IEM
a)

~:LvJu_u
0.0 0.5 y 1.0

A position c

Fig. 3. Relative errors of the IEM and the FEM solutions of (18) on the
line AC in Fig. 1.

rn

1 ● FEM5
: 2.0 ● o IEM

●
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Fig. 4. Relative errors of the IEM and the FEM solutions of (19) on the

line AC in Fig. 1.

tions are expressed by the following vector Helmholtz

equations for a resonant cavity with perfect conducting

walls:

VxVx H=k2H, VxVx E=k2E, (20)

where H, E, k are the magnetic field, the electric field and

a wave number, respectively. Boundary conditions on the

conducting wall are described as follows with a normal

unit vector n:

n“H=O, nxE=Oon F. (21)

In the cylindrical coordinates (r, 0, z), An analysis of an

axisymmetric resonant cavity is reduced to the following

axisymmetric scalar Helmholtz equation in two dimen-

sional coordinates (r, z) [8], [9]:

Definitions of@ and boundary conditions become

@ = rE6 and ~r = O on 17 for TE mode,

r#I = rH@ and ~r = O on r on TM mode. (23)

The integral equation is obtained in the IEM formulation

[8], [9], [12]:

(24)
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Fig.

[cm]

5. Division of the axisyrnmetric model of the PETRA accelerating
cavity [1] in the cylindrical coordinates.

In (24), @*is the following fundamental solution for the

source point (r’, z’):

,*-fi

[( ) 11 –: K(p) –E(p) ,
Irp

4rr’
(25)P2 = (r + ry + (z _ ~(yj

!.@* + ~(r– r’)~(z –z’) = 0,
r

where K(p) and E(p) are, respectively, the complete el-

liptical integral functions of the first kind and second kind.

These integral functions are evaluated with high accuracy

and short computational time by using mathematical li-

braries of computer systems [12]. In the analysis of a res-

onant cavity, the second IEM formulation is suitable and

(10), (11) become th? following from the boundary con-

ditions in (23):

[I’] {er} = IC2[S’]{O.}, (26)

{4,} = [~1 {er} + k2[T’1 {+,}, (27)

where the wave number k is arranged in front of the ma-

trices [S’] and [T’]. Then the following characteristic

equation is obtained from (26), (27) [8], [9]

[A] = [E] [P]-’[S’] + [T’], ~ = k-z. (28)

Eigenvalues and eigenfunctions are obtained from (28)

with a standard numerical technique. They correspond to

the resonant wave numbers and the internal potentials re-

spectively. Fig. 5 shows a division of the 1/4 axisym-

metric model of the PETRA accelerating cavity [1]. A

solid line of the boundary shows the conducting wall and

the model is divided to 123 elements. Several resonant

frequencies are calculated as shown in Table I. The IEM

solutions agree well with the FDM solutions [1]. In this

way, the analysis of a resonant cavity is reduced to the

TABLE I

COMPARISONSOF RESONANT FREQUENCIESOF THE
PETRA ACCELERATING CAVITY [1]

FDM Solutions IEM Solutlons

Modes [MHz] [1] [MHz]

TMO-EE- 1 515.2 514.2
TMO-EE-2 1247.2 1243.6

TMO-EM- 1 515.6 514.7

TMO-EM-2 1266.6 1’244.2

TMO-MM-1 757.0 753.2

TMO-MM-2 1477.1 1444.2

simple eigenvalue problem and the determinant search

method is not needed in the IEM.

One of difficulties of the BEM analyses for axisym-

metric Helmholtz-type equations is that fundamental so-

lutions of many axisymmetric Helmholtz-type equations

are obtained not by closed forms but by integral forms

[12]. Application of the IEM to the problems is useful

since the fundamental solution is obtained by the well

known closed form in (25).

IV. CONCLUSION

In the paper, scalar Helmholtz equations are solved with

the IEM. Further study on the vector Helmholtz equation

will be carried out in the near future. Results in the paper

are summarized as follows.

1) Two IEM formulations are obtained for the scalar

Helmholtz equation. One is a standard formulation and

the other is obtained from an elimination of unknown

boundary values.

2) Two dimensional scalar Helmholtz equations are

analyzed by the IEM and the FEM. Both solutions are in

good agreement with exact solutions. Though the IEM

requires considerable computational time compared with

the FEM, the first derivative is obtained directly with high

accuracy.

3) An axisymmetric resonant cavity is analyzed with

the second IEM formulation. The problem is reduced to

an analysis of the simple characteristic equation, and the

IEM solutions agree well with the FDM solutions.
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