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An Analysis of the Scalar Helmholtz Equation Using
the Integral Equation Method

Masanori Tsuchimoto, Atsuhiko Yoneta, Toshihisa Honma, and Kenzo Miya

Abstract—The scalar Helmholtz equations are investigated by
using the integral equation method (IEM). In the IEM analysis,
the fundamental solution of the Laplace equation is used as a
weighting function. Two IEM formulations are obtained; one
is a standard formulation and the other is obtained from an
elimination of the unknown boundary value. The accuracy and
computational time of the IEM are compared with those of the
finite element method in two dimensional scalar Helmholtz
problems. The analysis of a resonant cavity is reduced to a sim-
ple eigenvalue problem. Resonant frequencies of the IEM agree
well with those of the finite difference method. Usefulness of
the IEM is confirmed through the analyses of the scalar Helm-
holtz equations.

I. INTRODUCTION

HE GOVERNING equations for analysis of wave

guides and resonant cavities are the Helmholtz wave
equations. They were studied by many authors with the
finite difference method (FDM) and the finite element
method (FEM) [1]-[4]. When the boundary element
method (BEM) is applied to the analysis, a determinant
search method should be used to obtain resonant wave
numbers {5]. In the determinant search method, a large
number of recalculations of matrix elements are necessary
for different wave numbers, since the fundamental solu-
tion of the Helmholtz equation includes the wave number.
The integral equation method (IEM) makes up for this
weak point of the BEM, and its usefulness is reported in
analyses of eigenvalue problems [5]-[9]. Numerical for-
mulation of the [EM is based on the BEM and the Helm-
holtz-wave equation is treated as the Laplace equation
with an inhomogeneous term. The determinant search
method is not needed in the IEM, since the fundamental
solution of the Laplace equation is used as a weighting
function.

In the present paper, two IEM formulations are ob-
tained for the scalar Helmholtz equation. One is a stand-
ard formulation [5] and the other is obtained from an
elimination of the unknown boundary value [8], [9]. The
IEM solutions are in good agreement with exact solutions
in two dimensional scalar Helmholtz problems [10], [11].
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Though the IEM requires considerable computational time
compared with the FEM, the first derivative is obtained
directly with high accuracy. The analysis of an axisym-
metric resonant cavity is reduced to a simple eigenvalue
problem. Resonant frequencies agree well with the FDM
solutions [1]. It is shown that the IEM is useful in solving
the scalar Helmholtz equation.

II. Tue IEM FORMULATION

Through a formulation of the following scalar equa-
tion, the IEM is explained:

V¢ + ap + g =0, %))

where « is a constant and g is an arbitrary function with-
out including ¢. A weighted residual procedure with a
weighting function w is applied to (1). After integrating
by parts twice, the following equation is obtained:

S wVeo dI' — S oVw dT’
r T

+S ¢V + )wdQ + g gwdQ =0. (2
Q Q

where I is a boundary of a domain {2. In the IEM analy-
sis, (1) is treated as the Laplace equation with inhomo-
geneous terms and the following fundamental solution ¢*
of the Laplace equation is chosen as the weighting func-
tion w:

Vig* + 6 =0, (3)

where 6 is the Dirac delta function. Then the integral
equation with domain integrations is obtained for a field
point i:

09 i [ pu80
Ciai + &r ¢ on ar r ¢ n ar
== S apd* dQ + SQ go* dQ, 0]
Q

where { denotes the Cauchy principal value integration.
When the boundary T is sufficiently smooth, the coeffi-
cient C; at the field point is evaluated as follows:

0 ---igT+0Q,
C,={1/2 -+ ieTl, )
1 - ieq.
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The boundary and the domain are divided into N and M
elements, respectively. When the Dirichlet boundary con-
dition ¢p = <_15p and the Neumann boundary condition
(3¢ /dn)r = gr are applied to (4), the following matrix
equations are obtained for both boundary points and in-
ternal points, respectively:

[Col + Hr] {m - [Gr] {ZF}
T

= [Dpl{dg} + {dr}, (6)
q
(6.} + [Ho} {%} - [GQJ{ ‘"}
r qr
= [Dol{da} + {da}, @)
Dy = SQ ag* dQ, d; =2 XQ go* dQ,

where I is an unit matrix. In the BEM analysis, (6) is
solved to obtain unknown boundary value {¢r} and {gr},
and the internal value {¢, } is calculated from (7). On the
other hand, since {¢g} in (6) is also unknown value in
the IEM analysis, positions and numbers of {¢;} in the
domain Q are coincided with those of {¢y}. Then (6) is
combined with (7) to make the following simultaneous
equation:

¢
{CIFI + Hp _GI' “Dr jl r
H, G, I-Dy|] "
Q
Gr —Cypl —~ d
:[ T iT :I{QI‘}_{_{I‘}' ®)
Gy —H, ¢ér dg

This is the first IEM formulation [5]. The matrix of the
left hand side (LHS) is an (N + M) X (N + M) matrix.
The first derivative in Q is calculated directly as a deriv-
ative of (4):

3_¢_](§?;*3¢
dx  Jr dx on

ad 3(15*

](‘bax an

E3
+S oz¢—(é—dQ+SQ aidﬂ ©)

Furthermore, unknown boundary value {{I} is elimi-
nated from (8) [8], [9]. For a simple explanatlon (6) and
(7) are arranged as follows:

[Pl{er} = [Q1{er} + [S1{¢a} + {5},
{¢:} = [El{er} + [F1{er} + [T1{¢a} + {1}
(11)

where {er} is the unknown boundary value {{'} and {&r}
is the boundary condition {gﬁ} Since the matrix [P] in

(10)

(10) is a square matrix, there is an inverse matrix

{er} = [P17'((Q1{er} + [S1{da} + {s}). (12
Substitution of (12) to (11) yields
{¢:} = [EJIP]'AQ]{er} + [S1{¢a} + {s})
+ [F1{er} + [T1{sq} + {1} . (13)

When {¢,} is coincided with {¢q}, (13) is expressed as
(] — [E1[P17'[S] — [T]) {¢q}
= ([E1[P]17'[Q] + [F] {er}
+ [E1P]7" {s} + {1} (14)

This is the second ITEM formulation, where the matrix
of the LHS is an M X M matrix.

III. NuMERICcAL RESULTS AND DiscussioN

A. Analysis of Two Dimensional Scalar Helmholtz
Equation

Recently, stabilities of vector FEM solutions are dis-
cussed in eddy current analyses [10], [11]. The problem
and its boundary condition are defined as follows in two
dimensional Cartesian coordinates (x, y) [10]:

VXVXB+AN=finQ, nXxB=0onT,
F=2+ Ny =Y+ {2+ e ~-xDY, (15

where B, n are the magnetic field and a normal unit vector
on I', and i, j indicate an unit vector for x, y directions.
The coefficient A is a time constant in the eddy current
analyses [10], [11]. In this section, (15) is transformed to
scalar Helmholtz equations and the IEM is applied to
analyses of the scalar equations. The exact solution of (15)
is obtained for a square numerical model in Fig. 1 [10]:

B=(y-y)i+@-xYj (16)
Fig. 2 shows distributions of the exact solutions. From
the boundary condition in (15), the magnetic field is per-
pendicular to the boundary of the model. Equation (15) is
transformed as follows under a condition of V - B = 0:

V:B — \B = —f. 17)

For the numerical model in Fig. 1, (17) is separated into
x, y components and reduced to the following scalar equa-
tions:

Vsz - )\Bx = -2 - >\(y - y'l),
V’B, — NB, = =2 — N(x — x?%), (18)

Furthermore, an equivalent scalar Helmholtz equation to
(15) and its boundary condition are obtained from B = V

X A, A= (0,0, A)[I11]:
VA, ~ NA, = ~g, inQ, 34,/0n =0onT,
g =2(y —x) + Ns(y* — x%)
—5(y* = 2"}, (19)
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Fig. 1. Division of the numerical model for the two dimensional scalar
Helmholtz equation.
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Fig. 2. Distributions of exact solutions of (16).

Equations (18) and (19) are solved by the IEM and the
FEM. The same evaluation of the integrals is applied in
order to compare results of the both methods. The model
in Fig. 1 is divided to 8 X 8 domain elements and the
integrals are evaluated by using the Gaussian integration
with linear interpolation functions. Fig. 3 shows relative
errors of the magnetic field B, of (18) on the line AC in
Fig. 1. The coefficient X is set to 10™° which is a typical
~ parameter for spurious solutions in the vector FEM anal-
yses [10], [11]. Since (18) is a scalar equation, there is
no spurious solution in the analysis [10], [11]. Both IEM
and FEM solutions agree well with exact solutions. In the
analysis of (19), the magnetic field B, is obtained as the
derivative of 4,, i:e., B, = (34,/dy). Relative errors are
shown in Fig. 4. In the standard FEM analyses, the first
derivative is calculated as a difference of internal values.
A rough division of the model often becomes a source of
error. In the IEM, the first derivative is obtained directly
from (9) with high accuracy. On the other hand, compu-
tational time of the IEM is about twice as long as that of
the FEM, since integrals are complicated in the IEM com-
pared with those in the FEM.

B. Analysis of an Axisymmetric Resonant Cavity

In this section, an axisymmetric resonant cavity is stud-
ied with the second IEM formulation. Maxwell’s equa-
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Fig. 3. Relative errors of the IEM and the FEM solutions of (18) on the
line AC in Fig. 1.
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Fig. 4. Relative errors of the JEM and the FEM solutions of (19) on the
line AC in Fig. 1.

tions are expressed by the following vector Helmholtz
equations for a resonant cavity with perfect conducting
walls:

VXVXH=kH VxVXE=FkE, (20

where H, E, k are the magnetic field, the electric field and
a wave number, respectively. Boundary conditions on the
conducting wall are described as follows with a normal
unit vector n:

n-H=0,n XE=0o0onT. 21

In the cylindrical coordinates (r, 6, z), An analysis of an
axisymmetric resonant cavity is reduced to the following
axisymmetric scalar Helmholtz equation in two dimen-
sional coordinates (r, z) [8], [9]:

Ly = —k*¢, L= rg; <%%> + :722 (22)
Definitions of ¢ and boundary conditions become
¢ =rE, and ép = bon T for TE mode,

¢ =rHy and Gp = OonTI on TM mode. (23)

The integral equation is obtained in the IEM formulation

(81, 9], [12]:
ci¢i+§?iéi¢jdr— ¢—*a—¢d1‘=kzg¢i*dﬂ.
r r r on Q r

r on
(24)
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Fig. 5. Division of the axisymmetric model of the PETRA accelerating
cavity [1] in the cylindrical coordinates.

In (24), ¢* is the following fundamental solution for the
source point (7', z'):

e[l p
oF = —— Kl - —>K(p) - E(p)}
wp 2

) 4rr’
r+r?+@-z)

p (25)

—::Ldf" +06(0r—r)oz—2z) =0,

where K( p) and E( p) are, respectively, the complete el-
liptical integral functions of the first kind and second kind.
These integral functions are evaluated with high accuracy
and short computational time by using mathematical li-
braries of computer systems [12]. In the analysis of a res-
onant cavity, the second IEM formulation is suitable and
(10), (11) become the following from the boundary con-
ditions in (23):

[P1{er} = k*IS'T{¢a} (26)
{6} = [El{er} + KT {¢a}, @7)

where the wave number £ is arranged in front of the ma-
trices [S’] and [T’']. Then the following characteristic
equation is obtained from (26), (27) [8], [9]

[A] {oo} = B{dq},
[A] = [E][P1'[S1] + [T]. B =Kk (28

Eigenvalues and eigenfunctions are obtained from (28)
with a standard numerical technique. They correspond to
the resonant wave numbers and the internal potentials re-
spectively. Fig. 5 shows a division of the 1/4 axisym-
metric model of the PETRA accelerating cavity [1]. A
solid line of the boundary shows the conducting wall and
the model is divided to 123 elements. Several resonant
frequencies are calculated as shown in Table I. The IEM
solutions agree well with the FDM solutions [1]. In this
way, the analysis of a resonant cavity is reduced to the

Il

TABLE I
COMPARISONS OF RESONANT FREQUENCIES OF THE
PETRA ACCELERATING CAvITY [1]}

FDM Solutions IEM Solutions

Modes [MHz] [1] [MHz]
TMO-EE-1 515.2 514.2
TMO-EE-2 1247.2 1243.6
TMO-EM-1 515.6 514.7
TMO0-EM-2 1266.6 1244.2
TMO0-MM-1 757.0 753.2
TMO-MM-2 1477.1 1444 .2

simple eigenvalue problem and the determinant search
method is not needed in the IEM.

One of difficulties of the BEM analyses for axisym-
metric Helmholtz-type equations is that fundamental so-
lutions of many axisymmetric Helmholtz-type equations
are obtained not by closed forms but by integral forms
[12]. Application of the IEM to the problems is useful
since the fundamental solution is obtained by the well
known closed form in (25).

IV. CONCLUSION

In the paper, scalar Helmholtz equations are solved with
the IEM. Further study on the vector Helmholtz equation
will be carried out in the near future. Results in the paper
are summarized as follows.

1) Two IEM formulations are obtained for the scalar
Helmholtz equation. One is a standard formulation and
the other is obtained from an elimination of unknown
boundary values.

2) Two dimensional scalar Helmholtz equations are
analyzed by the IEM and the FEM. Both solutions are in
good agreement with exact solutions. Though the IEM
requires considerable computational time compared with
the FEM, the first derivative is obtained directly with high
accuracy.

3) An axisymmetric resonant cavity is analyzed with
the second TEM formulation. The problem is reduced to
an analysis of the simple characteristic equation, and the
IEM solutions agree well with the FDM solutions.
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